1. Let S be a non-empty finite set and let $g: S \to S$ be a function. Show that there exists $x \in S$ and $n \in \mathbb{N}$ such that

 $g^n(x) = x$

where $g^n = g \circ g \circ \dots \circ g$ (n times).

Solution: Let $x \in S$. Let

$$A = \{g^n(x) | n \in \mathbb{N}\}$$

Since $A \subseteq S$, A is finite. So there exists $n, m \in \mathbb{N}$ such that n < m and $g^n(x) = g^m(x)$ i.e, $g^n(x) = g^{m-n} \circ g^n(x)$. Now taking $y = g^n(x)$, we have $g^{m-n}(y) = y$.

2. Prove or disprove the claim that $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$f(m,n) = 2^{m-1}(2n-1)$$

is a bijection.

Solution: Let us assume that f(m, n) = f(p, q) for some $m, n, p, q \in \mathbb{N}$. Then,

$$2^{m-1}(2n-1) = 2^{p-1}(2q-1)$$

Dividing both sides by 2^{m-1}

$$2n - 1 = \frac{2^{p-1}}{2^{m-1}} \times (2q - 1) \tag{1}$$

Since L.H.S is odd so is R.H.S. But that will happen only if m=p. Putting this in (1) we get n = q. Therefore (m, n) = (p, q). Hence f is one to one.

Let $k \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that 2^{n-1} divides k and 2^n does not divide k. Then $k/2^{n-1}$ is odd. So there exists a $m \in \mathbb{N}$ such that $k/2^{n-1} = 2m-1$. Therefore $k = (2m-1) \times 2^{n-1}$. Hence f(n,m) = k.

So f is onto.

3. Show that given any two numbers $x, y \in \mathbb{R}$ with x < y there exists a rational number r such that x < r < y.

Solution: Let us first suppose that $0 \le x$. By the Axiom of Archimedes there is an integer q > 1/(y - x). Then (1/q) < y - x. The set of integers n such that $y \le (n/q)$ is a non empty (by Axiom of Archimedes) set of positive integers, and so has a least element p. Then $(p-1)/q < y \le (p/q)$, and x = y - (y - x) < (p/q) - (1/q) = (p - 1)/q. Thus r = (p - 1)/q lies between x and y. If x < 0, we can find an integer n such that n > -x. Then n + x > 0, and there is rational r with n + x < r < n + y, and r - n is a rational between x and y.

4. Let $\{b_n\}$ be a sequence of non-zero real numbers converging to a non-zero real number c. Show that the sequence $\{b_n\}$ converges to 1/c.

Solution: Let $\varepsilon > 0$ be arbitrary. Then there exist $N \in \mathbb{N}$ such that $| b_n - c | < \varepsilon$ for every n > N. Since $\{b_n\} \longrightarrow c \neq 0$, there exists $M \in \mathbb{N}$ such that $| b_n | > r > 0$ for every n > M, for some r > 0. Therefore

$$\left|\frac{1}{b_n} - \frac{1}{c}\right| = \left|\frac{b_n - c}{cb_n}\right| < \frac{\varepsilon}{|c|r}$$

$$(2)$$

for every $n > max\{M, N\}$

5. Define lim inf and lim sup of bounded sequences. Show that a bounded sequence $\{x_n\}_{n\geq 1}$ is convergent if and only if

$$\liminf_{n \to \infty} \{x_n\} = \limsup_{n \to \infty} \{x_n\}$$

Solution: Let $\{x_n\}$ be a bounded sequence. Let $y_n = \inf_{k \ge n} \{x_k\}$ and let $z_n = \sup_{k \ge n} \{x_k\}$, then y_n and z_n are monotone bounded sequences. So they converge. Then *limsup* and *liminf* are defined as

$$limsup\{x_n\} = lim\{z_n\}$$
$$liminf\{x_n\} = lim\{y_n\}$$

Let x_n be a convergent sequence and it converges to x,

let $\epsilon > 0$ be arbitrary. Since x_n converges to x, there exists $N \in \mathbb{N}$ such that $x + \epsilon \ge x_n \ge x - \epsilon$ for all $n \ge N$.

Then, $x + \epsilon \ge y_k \ge x - \epsilon$ for all $k \ge N$.

Therefore, $x + \epsilon \ge \liminf x_n \ge x - \epsilon$,

Therefore $|\liminf\{x_n\} - x | \le \epsilon$, since ϵ is arbitrary $\liminf x_n = x$.

Similarly by replacing z_n for y_n , we get $\limsup x_n = x$.

Now conversely suppose that $\liminf_{n \to \infty} \{x_n\} = \limsup_{n \to \infty} \{x_n\}$. $\inf_{n \ge k} \{x_n\} \le x_k \le \sup_{n > k} \{x_n\}$. Now proof follows by taking the limit on both inequalities. \Box

6. Show that a series of real numbers $\sum_{n=1}^{\infty} a_n$ is convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent and converse is not true.

Solution: Let $\epsilon > 0$ be arbitrary and since $\sum_{n=1}^{\infty} |a_n|$ converges, there exists $N \in \mathbb{N}$ such that $\sum_{i=n}^{m} |a_i| \leq \epsilon$ for all $m, n \geq N$.

Since $|\sum_{i=n}^{m} a_i| \leq \sum_{i=n}^{m} |a_i| \leq \epsilon$ for all $m, n \geq N$.

Therefore $\sum_{n=1}^{\infty} a_n$ converges. To prove the converse need not be true take $a_n = \frac{(-1)^n}{n}$, then $\sum_{n=1}^{\infty} |a_n|$ diverges by Leibeniez test and by p-test $\sum_{n=1}^{\infty} a_n$ converges.

7. Let z be be the real number with binary expression:

$$z = 0.b_1 b_2 b_3 \cdots, \tag{3}$$

where $b_k = 1$ if k = 3n + 1 for some natural number n, and $b_k = 0$ otherwise. Compute the decimal expansion of z.

Solution: We know that

$$z = \sum_{n=1}^{\infty} \frac{1}{2^{3n+1}} = 1/14 = \sum_{n=1}^{\infty} \frac{x_n}{10^n}$$
(4)

$$x_n = \begin{cases} 0 & if \ n = 1 \\ 7 & if \ n = 6k - 4fork \in \mathbb{N} \\ 1 & if \ n = 6k - 3fork \in \mathbb{N} \\ 4 & if \ n = 6k - 2fork \in \mathbb{N} \\ 2 & if \ n = 6k - 1fork \in \mathbb{N} \\ 8 & if \ n = 6kfork \in \mathbb{N} \\ 5 & if \ n = 6k + 1fork \in \mathbb{N} \end{cases}$$

This can be proved by observing that $1/14 = 0.0\overline{714285}$.